環境応用化学演習 小テスト 2025.10.23

学籍番号	- L	
F 424 AL H	U. 87	_
乙羟少丁	氏名	•

区別できる N 個の粒子すべてを、エネルギー準位 $\varepsilon_1 \sim n_1$ 個、 $\varepsilon_2 \sim n_2$ 個・・・ $\varepsilon_1 \sim n_1$ 個というふうに分配する仕方の数 W を求めてみよう。

まず、各準位は縮重していない場合を考えてみよう。N 個のうち、最初の準位 ϵ_1 へ入る n_1 個の 粒子の選び方は、 ${}_NC_{n_1}=\frac{N!}{n_1!(N-n_1)!}$ となる。続いて、残った N - n_1 個の粒子から ϵ_2 へ n_2 個配

置する方法は, $_{N-n_1}C_{n_2}=\frac{(N-n_1)!}{n_2!(N-n_1-n_2)!}$ であり,同様に $_{\mathfrak{S}}$ $\sim n_3$ 個配置する方法は

 $_{N-n_1-n_2}C_{n_3}=rac{(N-n_1-n_2)!}{n_3!(N-n_1-n_2-n_3)!}$ となる。このようにして ϵ 1 から ϵ 3 までの各準位 ϵ 4 への配置数

をそれぞれ考えることができる。全ての準位を考慮した配置の仕方の数,すなわち W は,これら各準位への配置の仕方の数の積となる。この Wを計算すると, $W=\frac{N!}{n_!!n_!!n_!!n_!!\cdots n_!!}$ となる。

つぎに、準位 α の縮重度が g_i である場合を考える。これは各 α の準位 α において、それぞれの粒子が g_i 通りの配置を取りうることを示す。従って、準位 α にあるひとつの粒子が取りうる状態は g_i 通りである。準位 α にあるm。個それぞれの粒子がめいめい g_i 通りの配置を取りうるので、 g_i 重の縮重により配置の仕方は $g_i^{n_i}$ 倍になる。このようなことが、全ての準位において独立に考えられることになるので、縮重がない場合に比べて全配置の仕方の数は $g_i^{n_i}$ をすべて掛けあわせた $g_1^{n_1}g_2^{n_2}g_3^{n_3}\cdots g_r^{n_r}$ 倍に増えることになり、結局Wは $W=g_1^{n_1}g_2^{n_2}g_3^{n_3}\cdots g_r^{n_r}$ $\frac{N!}{n_1!n_2!n_3!\cdots n_r!}$ となる。